Evaluation of GANs on Texture Generation for Computer Graphics

CS 482 Project Final Presentation MinKu Kang

Goal of the Project

1. Find (learn) a meaningful manifold

Material Training Data from Users

Purchased Material Pack from Unity Asset Store

COLE

Ultimate Material Pack \$15 4 user reviews Import Taxes/VAT calculated at checkout **Popular Tags** camouflage Brick Fabric Asphalt plank rusted ground old wood concrete metal Edit tags Pie. Report tags

Purchased Material Pack from Unity Asset Store

📢 Unity 2018.2.10f1 Personal (64bit) - SampleScene.unity - Material Synthesis - PC, Mac & Linux Standalone <DX11>

File Edit Assets GameObject Component Tools Window Help

Purchased Material Pack from Unity Asset Store

Various **texture maps** to give **fine surface details** on low-poly meshes

Modified Goal of the project

Use it as training data for **material texture generation**

 Find (learn) a meaningful manifold
Find (learn) a mapping between the lowdimensional chart and the manifold

Brief Introduction on GAN

GAN's Architecture

- Z is some random noise (Gaussian/Uniform).
- Z can be thought as the latent representation of the image.

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf

Training Discriminator

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Training Generator

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

GAN's formulation

 $\min_{G} \max_{D} V(D,G)$

- It is formulated as a **minimax game**, where:
 - The Discriminator is trying to maximize its reward V(D, G)
 - The Generator is trying to minimize Discriminator's reward (or maximize its loss)

$$V(D,G) = \mathbb{E}_{x \sim p(x)} [\log D(x)] + \mathbb{E}_{z \sim q(z)} [\log(1 - D(G(z)))]$$

• The Nash equilibrium of this particular game is achieved at:

•
$$P_{data}(x) = P_{gen}(x) \ \forall x$$

• $D(x) = \frac{1}{2} \quad \forall x$

http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf

- Deep Learning models (in general) involve a single player
 - The player tries to maximize its reward (minimize its loss).
 - Use SGD (with Backpropagation) to find the optimal parameters.
 - SGD has convergence guarantees (under certain conditions).
 - Problem: With non-convexity, we might converge to local optima.

 $\min_{G} L(G)$

- GANs instead involve two (or more) players
 - Discriminator is trying to maximize its reward.
 - Generator is trying to minimize Discriminator's reward.

 $\min_{G} \max_{D} V(D,G)$

- SGD was not designed to find the Nash equilibrium of a game.
- Problem: We might not converge to the Nash equilibrium at all.

Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.

http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf

Sample Collection

Sample Patches from a texture image

2048 x 2048 px A single large texture

5,000 patches, 28 x 28 px each gray-scaled A half for training, the other half for testing

Sample Patches from a texture image

5,000 patches, 28 x 28 px each gray-scaled

2048 x 2048 px A single large texture

Sample Patches from a texture image

2048 x 2048 px A single large texture

gray-scaled

Texture Generation

GAN Diagram from https://github.com/hwalsuklee/tensorflow-generative-model-collections

Vanilla GAN for texture generation

Reference

Training

Deep Convolutional GANs (DCGANs)

Key ideas:

- Replace FC hidden layers with Convolutions
 - Generator: Fractional-Strided convolutions
- Use Batch Normalization after each layer

Inside Generator

- Use ReLU for hidden layers
- Use Tanh for the output layer

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).

http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf

Deep Convolutional GAN (DCGAN) for texture generation

Reference

Training

Vanilla GAN vs. DCGAN

Deep Convolutional GAN for texture generation

Reference

Training

Deep Convolutional GAN for texture generation

Reference

Training

Texture Generation with Boundary Condition

How to make a **Boundary-Respecting** Generator ?

Boundary condition

Boundary condition vector: 2*w + 2*(h-2) pixels

How to make a **Boundary-Respecting** Generator ?

Image from https://github.com/hwalsuklee/tensorflow-generative-model-collections

How to make a **Boundary-Respecting** Generator ? : Utilize Conditional GAN (CGAN)

How to make a **Boundary-Respecting** Generator ? : Utilize Conditional GAN (CGAN) Discriminator D(xly)

H:28

CGAN:

Mirza, Mehdi, and Simon Osindero.

"Conditional generative

CGAN vs. Boundary Enforced CGAN (BECGAN, proposed)

Boundary Enforced CGAN (BECGAN, proposed)

CGAN vs. Boundary Enforced CGAN

Iter. 3,000

BECGAN improves over learning iterations

Cloth texture

Iter. 400

. . .

Iter. 0 boundary

BECGAN improves over learning iterations

wood texture

Iter. 3000

Iter. 4600

Iter. 0

Some failure cases ... (possibly due to GAN instability in learning)

ground_dirt texture

Iter. 3000

Iter. 0

: Does the generator memorize the data or not ?

Diversity given a same boundary condition

- generated **highlight** effect
 - generated different **crack** patterns

Diversity given a same boundary condition

Diversity given a same boundary condition

Deep Convolutional GAN for **Unconstrained** Texture Generation

Conditional GAN for **Boundary Conditioned** Texture Generation

